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Abstract-The speed at which large files can travel across  a computer 
network is an  important performance  measure of that network. In this 
paper we examine the achievable sustained throughput in the 
ARPANET. Our point of departure is to describe the procedures used 
for controlling the flow of long messages (multipacket messages) and  to 
identify  the  limitations  that these  procedures  place on the  throughput. 
We then present the  quantitative results of experiments which meas- 
ured the maximum throughput  as a function of  topological  distance in 
the ARPANET. We observed B throughput of approximately 38 kbit/s 
at  short distances. This throughput falls off at  longer distances in a 
fashion which depends  upon which  particuiar version of the flow con- 
trol procedure is in use; for example, at  a  distance of 9 hops, an Octo- 
ber 1974 measurement gave 30 kbitjs, whereas a May 1975 experiment 
gave 27 kbitls. The  two  different flow control procedures for these 
experiments are described, and  the sources of throughput degradation 
at longer distances are identified,  a major cause being due to a poor 
movement of critical  limiting  resources around  in  the  network (this  we 
call “phasing”). We conclude that flow control is a tricky business, but 
in spite of this, the ARPANET throughput is respectably high. 

I. INTRODUCTION 

T HE ARPANET,  which was the world’s first large-scale 
experimental packet-switching network, needs little  intro- 

duction;  it has  been  amply documented (see,  for example, 
[5] and the extensive  references  therein). Our  interest in this 
paper is to describe the message-handling protocols  and some 
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experimental results for  the achievable throughput across the 
ARPANET. These experiments were conducted  at  the UCLA 
Network Measurement Center (NMC) and show that  the  net- 
work can support roughly 38 kbit/sec  between HOST com- 
puters which are a few hops  apart; .for more distant HOST 
pairs, the  throughput falls off to  a level dependent  upon  the 
particular version of message processing used, as discussed in 
detail  below. 

An earlier NMC experiment  reported  upon  the behavior  of 
actual user traffic in. the ARPANET (and also described the 
NMC itself) [4] . More recent NMC experiments  identified, 
explained,  and solved some  deadlock and  throughput-degrada- 
tion  phenomena in the ARPANET [l 11 and also measured the 
effect of network  protocols and control messages on line  over- 
head [4] . The  experiments  reported  upon herein  consisted  of 
throughput measurements  of UCLA-generated traffic (using 
our PDP 11/45 HOST in a  dedicated  mode) which was sent 
through  the ARPANET to “fake” HOST’S at various topo- 
logical distances  (hops) from UCLA. Each.experiment ran for 
10 min  during  which  time full (8-packet)  multipacket  traffic 
was pumped  into  the ARPANET as fast as the  network would 
permit.  Both  throughput  (from  the UCLA HOST to the 
destination HOST) and delay (as seen by  the UCLA HOST) 
were measured, along with some other statistics described 
below. 

This  paper is organized as foll6ws. We describe the message- 
handling  procedure for  multipacket messages in Section 11, 
identify  the  limitations this  procedure  imposes ort the  through- 
put in Section 111, and then  quantitatively  report  upon  the 
October  1974  throughput  experiments in Section IV. The 
issue of looping in the adaptive routing procedure  and its 
erratic  effect  on  throughput is discussed in Section V. Some 
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recent changes to  the message-processing procedure are de- 
scribed’in  Section VI, and in  Section VI1 we describe some of 
its faults;  their  correction, and the experimentally achieved 
throughput as of May 1975, using this new procedure. 

11. HANDLING OF MULTIPACKET MESSAGES 

In this  section, we describe the details for handling multi- 
packet messages, in the ARPANET as of  October  19741;  it was 
at this  time that  the initial  set of  throughput  experiments 
reported here was conducted. This discussion will permit us 
to  identify  throughput  limitations and to discuss system 
bottlenecks. 

We are interested  in  the transmission of a  long data stream 
which the ARPANET accepts as a  sequence  of messages (each 
with a maximum  length  of  8063  data bits). Each such message 
in this  sequence will be a “multipacket” message (a multipacket 
message is one ‘consisting of more than  one  1008-bit packet). 
To describe the  sequence  of events in handling  each multipacket 
message we refer to  Fig. 1 (which gives the details for a data 
stream requiring only onehll multipacket messageforsimplicity). 
A message is treated as a multipacket message if.the HOST-IMP 
interface has not received an  end-of-message, indication  after 
the  inptit of the first packet is  completed (shown as point a 
in Fig. 1 ) .  At this  time, transmission  of the remaining packets 
of this message from  the HOST to  the IMP  is temporarily 
halted  until  the message acquires  some network resources as 
we now  describe. First,  the  multipacket message must acquire 
a message number  (from  the IMP) which is used for message 
sequencing (point;b); ali messages originating at  this IMP and 
heading to  the same destination IMP share  a common  number 

- space. Next, an entry in the pending leader table (PLT)  must 

the leader of all multipacket messages that are currently being 
handled  by  the source IMP. Among other things, the  function 
of  the  PLT is to  construct  the packet  headers for  the succes- 
sive packets  of the  multipacket message. Such an entry is 
deleted and released when  the RFNM (the  end-to-end  acknow- 
ledgment whose acronym comes from  “ready-for-next- 
message”) is received from  the  destination IMP. The  PLT is 
shared by messages from all HOST’S attached  to  the same IMP 
and used for all possible destinations. 

After  the  PLT  entry has been obtained  by  the  multipacket 
message, a table is interrogated to  find  out  whether  there are 
eight reassembly buffers reserved for  this source IMP at  the 
desired destination IMP. If this is not  the case,  a control 
message REQALL (request for  allocation) is generated and  sent 
from  the source IMP (also shown  at  point c) to  the  destination 
IMP which requests  an  allocation ,of these  buffers. The  protocol 
is such that  this REQALL. steals the acquired message number 
and the  PLT  entry  for  its  own use at this time. This request is 
honored by the  destination IMP  as soon as it has  eight buffers 
avaiiable (point d ) .  To  report  this fact  a subnet  control 
message ALL (allocate) is returned to  the source IMP, thus 
delivering the  8-buffer :,llocation.  Since the previously acquired 

. .  be obtained as shown  at  point c. The PLT  contains a copy  of 

‘This is the message-handling procedure referred to as “version 
2” in [ 5 ] .  
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Fig. 1.  The sequence of events for one multipacket transmission. 

message number  and  PLT  entry have been used, a  new message 
number and  a  new  PLT entry will have to  be obtained  for  the 
multipacket message itself. (Had 8 reassembly buffers  been 
reserved in the first  place, this  would have shown at  the source 
IMP by  the presence of an unassigned ALL and the  steps  from 
c to e would  not have occurred).  Only  when all these  events 
have taken place can the first  packet begin its  journey to the 
destination IMP and  can the  input  of  the remaining packets  be 
initiated, as shown  at  point e. 

When  all packets  of  the  multipacket message have been 
received by the  destination IMP (point f), the message is put 
on the IMP-to-HOST output  queue.  After  the transmission of 
the first packet  to  the HOST (point g), the RFNM for  this 
message is generated at  the  destination IMP (also point g)  to  
be returned to  the source IMP. This RFNM prefers to carry a 
“piggy-backed’’ ALL (an  implicit  reservation of 8 buffers  for 
the  next  multipacket message) if the necessary buffer space is 
available. If not,  the RFNM will wait for  at  most 1 s for  this 
buffer space. In case the necessary 8 reassembly buffers  do  not 
become available within  this  second,  the RFNM is then  sent 
without a piggy-backed ALL. (We show the case where the 
buffers do become available in time and so the ALL returns 
piggy-backed on  the RFNM). 

After  the  reception  of  the RFNM at  the source IMP (point 
h) ,  the message number. and the  PLT  entryfor  this message are 
freed and the source HOST is informed  of  the  correct message 
delivery. In case the RFNM carries a piggy-backed ALL, the 
allocate counter  for  the  proper  destination IMP is incremented. 
This implicit  reservation  of buffer space is returned to  the 
destination IMP if some HOST attached  to  the source IMP 
does not  make use of  it  within  the  next 250 ms  (shown at 
point i); the cancellation is implemented as a control message 
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GVB (giveback) which is generated at  the source IMP. If, 
however, the  next  multipacket message to  the same destina- 
tion IMP is received from  any source HOST within  250 ms, 
this message need only acquire a message number  and  a PLT 
entry  before  it can be sent  to  the  destination IMP, and need 
not await  an ALL.  

Thus we  see that  three separate resources must be obtained 
by  each multipacket message prior to  its transmission through 
the  net:  a message number,  a  PLT  entry,  and an  ALL.^ 

111. THROUGHPUT LIMITATIONS 

Let us now identify  the  limitations to  the  throughput  that 
can be achieved between a pair of HOST’s in the ARPANET. 
First we consider the  limitations  that are imposed by  the  hard- 
ware. The line  capacity  represents the most  obvious  and 
important  throughput  limitation. Since a HOST is connected 
to  an IMP  via a single lOO-kbit/s transmission  line, the 
throughput can never exceed lOO-kbit/s. If there is no alter- 
nate routing in the  subnet,  the  throughput is further limited 
by the  50-kbit/s line capacity  of  the  subnet  communication 
channels.  (The issue of alternate  routing is discussed later.) 

The processing bandwidth of the IMP allows for  a  through- 
put of about 700 and 850  kbit/s  for  the  316  and  516 IMP’s, 
respectively [ 6 ] .  Therefore the IMP’s can easily handle several 
50-kbit/s lines  simultaneously. The processing bandwidth  of 
the HOST computers represents a more  serious problem. 
Severe throughput degradations due  to  a lack of CPU time 
have been reported in the past [ l ]  , [ 2 ]  , [12] . However,  these 
reports also indicate that the  degradations  are  in  many  cases 
caused by inefficient implementations of higher level pro- 
tocols  [4] . Therefore, changes in  these implementations have 
frequently resulted  in enormous performance improvements 
[13] . To avoid throughput degradations due  to  a CPU-limited 
HOST computer  for  our  throughput  experiments, we used a 
PDP 11/45  minicomputer  at UCLA whose only task was to 
generate 8-packet messages as fast as the  network would 
accept them. 

Let us now discuss what  throughput  limitations are im- 
posed on the system  by the  subnet flow control procedure. As 
discussed above, there are two kinds of resources a message 
must  acquire  for  transmission:  buffers  and control blocks 
(specifically message numbers and  table  entries). Naturally, 
there is only  a finite number of  each  of  these resources avail- 
able. Moreover, most of  the buffers  and control  blocks must 
be shared with messages from  other HOST’s. The lack  of any 
one  of the resources can create a  bottleneck which  limits the 
throughput  for  a single HOST. Let us now discuss how many 
units of  each resource are available and comment  on  the likeli- 
hood  that  it becomes a  bottleneck. This discussion refers to 
the ARPANET as of October  1974. 

‘The procedure just described extracts a price for the implementa- 
tion of its  control  functions. This  price is paid for in the  form of over- 
head in the  packets as they  are transmitted over the communication 

’ channels, in the packets  as they  are stored in IMP buffers, in control 
messages (IMP-IMP,  IMP-HOST, HOST-HOST), in measurement and 
monitoring,  etc. We refer the reader to [4 ]  for  the effect  of this over- 
head on the line  efficiency. 

In October  1974,  a packet was allowed to  enter  the source 
IMP only if that IMP had  at least four free buffers available. At 
that  time,  the  total  number of packet  buffers in  an IMP with 
and without the very distant HOST (VDH) software was, 
respectively, 30 and 51. This meant  that an interruption  of 
message input due to  buffer shortage could  occur  only in the 
unlikely  event that  the source IMP was heavily engaged in 
handling store-and-forward as well as reassembly traffic. 

The  next resource the message had to  obtain was the 
message number. There was a  limitation of only four message 
sequence numbers allocated per source  IMP-destination IMP 
pair. This meant  that all source HOST’s at some  source IMPA 
which communicated  with  any  of  the  destination HOST’s at 
some  destination IMP B shared the same stream of message 
numbers  from IMP A  to IMP B. This possible interference 
between HOST’s and the fact that  there were only four 
message numbers which  could be used in parallel meant  that 
the message number allocation could  become  a serious bottle- 
neck in cases where the source  and destination IMP were 
several hops  apart. (This was the major reason for  the recent 
change to  the message processing procedure  which has recently 
been implemented; see Section VI). 

After a message number was obtained,  the  multipacket 
message had to  acquire one of the PLT  entries  of  which there 
was a shared pool of six. Since the PLT is shared by all HOST’s 
which are attached  to  the source IMP and used for all possible 
destinations,  it also represents a  potential  bottleneck. This 
bottleneck can easily be removed by increasing the  number  of 
entries permitted  in  the  PLT. However, the PLT also serves as 
a flow control device whch  limits the  total  number of multi- 
packet messages that can be handled by  the  subnet simultane- 
ously. Therefore, removal of the  throttling  effect due to  the 
small size PLT  may introduce  other congestion or  stability 
problems. A corresponding  consideration applies to  the 
message number  allocation. 

The number of  simultaneously  unacknowledged 8-packet 
messages  is further limited by  the  finite reassembly space in 
the  destination IMP. In  October  1974,  a  maximum of 34 
buffers was available for reassembly (for IMP’s without  the 
VDH software).  This meant  that  at most four  8-packet 
messages could be reassembled at  the same time (leaving space 
for  at least two single-packet messages). (The reassembly space 
must  of  course be shared with all other HOST’s that are 
sending messages to  the same destination IMP.) It may there- 
fore become  another serious throughput  bottleneck. 

From  the above discussion, we know that even if there is no 
interference from  other HOST’s there  cannot  be more than 
four messages in  transmission  between any pair of HOST’s due 
to  the message number  limitation. This  restriction decreases 
the achievable throughput in the event that  the line bandwidth 
times the  round  trip time is larger than  four times the maxi- 
mum message length. Fig. 2 depicts  this situation. The input 
of the first  packet  of message i is initiated  at time a after  the 
last packet  of message i - 1 has been processed in the source 
IMP. After  the  input of this first packet is complete,  the 
source IMP waits until  time b when the RFNM for message i - 
4 arrives. Shortly  after  this RFNM has been processed (at  time 
c )  the transmission  of the first  packet over the first hop and 
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DESTI. 
, RFNM FOR  MSG. i.4 
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TIME 

Fig. 2. The normal sequence of multipacket messages. 

the  input  of  the remaining packets from  the  HOST'is  initiated. 
At time d, all packets have been reassembled in the  destination 
IMP, the first packet has been  transmitted to  the  destination 
HOST and 8 reassembly buffers have been acquired by  the 
RFNM which is then  sent (with a piggy-backed ALL) to  the 
source IMP. The RFNM reaches the source IMP at time e and 
thereby allows the transmission of message i + 4 to  proceed. 
In this figure we also show a  snapshot  of  the  net  at  the time 
slice indicated  by  the dashed arrow. We show four messages 
(each with  ,their  own ALL and  PLT): i + 2 is leaving the 
source IMP, both i + 1  and i are in flight, and i - 1 is entering 
the  destination IMP. We also see the  two uriiised PLT  entries in 
the source IMP. The possible gaps in successive message trans- 
missions represent a loss in throughput  and can be caused by 
the  limitation of four messages outstanding per IMP pair; 
this manifests  itself in the next  (fifth) message awaiting the 
return  of  a RFNM which releases one of the message numbers. 

We have not  yet  mentioned  the .interference  due to  other 
store-and-forward packets  which  can  significantly decrease 
the HOST-to-HOST throughput. This interference causes larger 
queueing  times and possibly  rejection by  a neighbor IMP. Such 
a rejection occurs if either  there are 20  store-and-forward 
packets in  the neighbor IMP or if the  output  queue  for  the 
next  hop is full.  (There is an allowed maximum  of  20  store- 
and-forward  packets per IMP and  of 8 ,packets  for each output 
queue.) A rejected packet is retransmitted if no IMP-to-IMP 
acknowledgment has been received after  a  125 ms timeout. 

We now turn  to  a brief discussion of alternate  routing and 
its  impact  on our throughput  experiments. By alternate 
routing we refer to  the possibility  of  sending data over two (or 
more)  completely  independent  paths  from source to  destina- 
tion.  The  shorter  (shortest)  path (in terms  of  number of hops) 
is usually called the primary path,  and  the longer  path(s) are 
called secondary  (tertiary, etc.) or alternate  paths.  For 
reliability reasons there  should always be at least one  alternate 
path available in a  properly  operating  network.  It  turns  out in 
the ARPANET that  alternate  paths are rarely used if they are 
longer than  the  primary  paih  by  more  than  two  hops.  The 
reason for  this comes from  the  way  the delay estimate is cal- 
culated,  updated,  and used by  the  routing  procedure  and  from 

the way the  output queues are managed. Each  hop  on the  path 
from source to  destination  contributes  four  (arbitrary) units to 
the delay estimate. Each  packet in an output  queue between 
source and  destination  contributes one additional delay unit 
to  the delay estimate. Since the  length of the  output queues 
is limited to  8 packets,  one hop can therefore increase the 
delay estimate by at least 4,  and  at  most,  12 units. Thus  the 
minimum and maximum delay estimates over a  path of n hops 
are, respectively, 4n and 1211 delay units. Packets are always 
sent over the  path  with  the smallest current delay estimate. 
From  this,  it follows that  an alternate path is never used if it  is 
more than  three times  longer (in terms  of  hops)  than  the 
primary path.  Thus,  for  a primary path of  length n ,  alternate 
routing is possible only over paths of length less than 3n hops. 
Let us assume that all the channels  along the primary and 
alternate secondary path have the same capacity  and  that  there 
is no interfering  traffic. If we send as many packets as possible 
over the  primary  path, these packets usually will not  encounter 
large queueing  delays because this  stream is fairly deterministic 
as it proceeds down  the  chain. This  means that  the delay 
estimate increases only slightly, although all of the  bandwidth 
is used up. Therefore a switch to an alternate  path occurs only 
if that  path is slightly  longer than  the primary path. In the case 
of  interfering traffic,  the  output  queues will grow in  size, and 
therefore  a switch is more likely to  occur.  Such  a switch to  an 
alternate  path  may  therefore  help  to regain some  of the  band- 
width  that is lost to  the interfering traffic.  It has already been 
pointed  out in [7] that, even if primary and  secondary  paths 
are equally long,  at most a 30 percent increase in throughput 
can be achieved.  This is due to  the restriction of  a  maximum 
of 8 packets  on  an  output  queue  and  the fact that  the  fre- 
quency  of switching between lines is limited to once every 
640 ms (for heavily loaded:  50-kbit/s lines). Thus  the  back- 
logged queue of 8 packets on the old path will provide  over- 
lapped transmission for  only 8 X 23.5 = 188 ms of  the  total  of 
640 ms between  updates  (the  only times when  alternate  paths 
may be selected). The relatively slow propagation  of  routing 
information  further reduces the  frequency of  switching between 
the primary  and secondary  path. This discussion shows that 
alternate  paths have only  a small effect  on  the  maximum 
throughput  that can be achieved. However, the  alternate  paths 
are of great importance  for  the reliability of  the  network. 

IV. THROUGHPUT EXPERIMENTS 

The October  1974  throughput  experiments  produced  the 
results shown in Fig. 3. Here we show the  throughput (in 
kilobits/second) as a  function  of  the  number  of  hops  between 
source and  destination. Curve A is for  the  throughput averaged 
over the  entire 10-min experiment; curve B is the  throughput 
for  the best  block  of 150 successive messages. Note  that we are 
able to  pump an average of roughly  37-38.5 kbit/s  out  to 5 
Hops3; it  drops  beyond  that, falling to  30 kbit/s  at 9 hops  due 
largely to  transmission gaps caused by  the 4-message limita- 
tion. Also, the best 150-message throughput is not  much 

'This indicates an approximate efficiency of 75 percent on the 50- 
kbit/s lines. See [4] for a detailed description of line efficiency. 
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Fig. 3. ARPANET throughput (October 1974). 
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Fig. 4. Average round-trip delay in the ARPANET (October 1974). 

better  than  the overall average, indicating that we are almost 
achieving the maximal  performance  most of  the  time.  In 
Fig. 4 ,  we show the corresponding curves for  the average 
round-trip delays (as seen by  the UCLA PDP 11/45 HOST) 
as a function of source-destination  hop  distance;  that is, 
curve A’ is for  the average and curve B’ is for  the best 150 
successive messages. Note  that  the average delay for n hops 
may be  approximated  by 200 + 90(n - 1)  ms. The measured 
histogram for delay is  given in Fig. 5 for  hop distances of 1, 5, 
and 9. Some  of  the large delays shown in this figure are caused 
by looping as explained  in the  next section. Of further  interest 
is the  autocorrelation coefficient of  round-trip delay for suc- 
cessive messages in the  network;  this is shown  in Fig. 6. Note 

R O U N D - T R I P   T I M E  (MSEC) 

Fig. 5. Histogram of round-trip delay. 

1.0, 
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N U M B E R  OF MESSAGES 

Fig. 6 .  Correlation  coefficient  for message delay. 

that message delay is correlated out  to  about 3 or 4 successive 
messages. 

V. LOOPING 

The observation  of  occasional very long network delays 
recently  led to  an investigation  of this  phenomenon.  The 
results  showed that  at times there was extensive looping in the 
subnet, i.e., packets were tossed  back and  forth  between neigh- 
boring nodes  many times  and thus did not reach their  destina- 
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tion  until  the  loop was removed through  the adaptive  routing TABLE I 
procedure. In what follows we describe how  the ARPANET 
tries to  avoid loops  and  why  this  procedure may fail in  certain 
cases. 

Let’us consider a  net  with  the following  linear topology. 

The  exact  topology  between  nodes D and A is immaterial  for 
our discussion; node X is that  node  in  the “rest of  the  net- 
work” which  sends routing  updates to  node A. In  this  kind of 
configuration,  nodes B and C should always send packets  for 
node D to  their  left-hand neighbor  (nodes A  and B, respec- 
tively). We adopt  the following notation  to be used in the 
three following  examples. 

B + Cmeans  that  node B sends a  routing message to  node C. 
d/l/A  means  that  the overall delay estimate to node D is d 
units,  the local  delay over the best delay line to  a neighbor 
is 1 unit,  and A is the  name of the best delay neighbor. 

Table I describes an example of  how  loops can occur if no 
,loop  prevention  procedure is used.  The reader should review 
the earlier discussion which describes how delay estimates are 
formed. 

Initially,  the local  delays  in IMP’s A, B, and C are zero,  and 
the delay estimates to  IMP D are, respectively, d - 4, d, and 
d + 4 delay units (row 0). Assume now  that  a  sudden increase 
in traffic  between  node A and node D causes the delay  esti- 
mate in A  to  be increased by 9 units (row 1).  This  fact is 
reported to  B (row 2). Since C has not  yet been informed  of 
the  sudden increase in traffic,  it sends the  old delay estimate 
to B. This causes B to consider C its best  delay  neighbor for 
IMP D (row 3); a  loop  between IMP’s B and C has  now been 
created! Tlvs loop remains  effective until B tells C about  the 
new situation (row 4), C reports back to B (row 7), and finally 
A’s routing message causes B to  switch back to  A as its best 
delay  neighbor  (row  10).  Since routing messages are sent every 
640 ms, the  loop persists for 640 to  1280 ms in this  example. 

To prevent the occurrence of  this  kind of loop in the 
ARPANET,  a line hold-down mechanism was implemented 
[8]. The  function of this mechanism was to  continue using the 
best  delay path  for  up  to 2 s (ignoring the  estimated delay 
from  nonbest delay  neighbors)  whenever the delay estimate  on 
this  path increased by  more  than 8 delay units.  The  argument 
put  forth  in favor of this  hold-down  strategy was that,  at times 
of sudden change, a  node  cannot  be sure that  its neighbors 
have already  been informed  of this  change. Therefore,  it 
should ignore the delay estimates  from all but  the best  delay 
neighbor for some time  until  the  information on the  sudden 
change has  propagated  through  the  net. 

Table I1 shows  how this  hold-down mechanism  prevents 
the  loop in the previous example.  The  hold-down  of  a line 
is indicated  by an exclamation  mark (!). Note  that IMP’s A 
and B start  holding  down  their line to  the best  delay  neigh- 
bor since their delay estimate gets worse by  more  than 8 

Routing IMP A IMP B IMP C 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

initially d - 4/O/X 
X + A d + 5 / 4 / X  
A + B  
C ’ B  
B - t C  
X -+ A d + 5 / 4 / X  
A + B  
C + B  
B + C  
X -+ A d + 5 / 4 / X  
A ’ B  

d / O h  d + 4/O/B 

d + 9/O/A 
d + 8/O/C 

d + 13/1/B 

d + 8/O/C 
d + 17/O/C 

d + 21/O/C 

d + 9/O/A 

TABLE I1 

Routing IMP A IMP B IMP C 

0 initially d - 4/O/X 
1 X + A d + 5 / 4 / X !  
2 A 4 B  
3 C + B  
4 B + C  
5 X -t A d + 5 / 4 / X !  
6 A 4 B  
7 C + B  
8 B + C  
9 X + A d + 5 / 4 / X !  

10 A + B  

dlO/A d + 4,’O/B 

d + 9/O/A!  
d + 9/O/A!  

d + 14/1/B! 

d + 9/O/A!  
d + 9/O/A!  

d + 13/O/B! 

d + 9/O/A! 

TABLE I11 

Routing IMP A IMP B IMP C 

0 initially 
1 X - t A  
2 A + B  
3 X + A  
4 A + B  
5 C + B  
6 B + C  
I X + A  
8 A + B  
9 X + A  

10 A - t B  
1 1  C + B  

d - 4/O/X dlOIA d + 4/O/B 
d + 1/2 /X 

d + 5/O/A 
d + 5 / 4 / X  

d + 9/OIA 
d + 8/O/C 

d + 13/1 /B!  
d + 5 / 4 / X  

d + 5 / 4 / X  
d + 8/O/C 

d + 8/O/C 
d + 17/O/C! 

delay units (rows 1 and 2). This causes IMP B to  ignore the 
lower  delay estimate received from IMP C and the  loop is 
thereby  prevented. 

Since the decision of whether or not  to  initiate  a line hold- 
down  depends solely on the delay  difference  between  consecu- 
tive routing messages, the  hold-down mechanism is sensitive to 
the  frequency  at which routing messages are sent.  The  routing 
message frequency, however, is a  function of  line  speed  and 
line utilization.  Therefore  it is quite possible, for  example, 
that A sends two  routing messages to B before B sends one 
routing message to C. Table 111 gives  an example of  the  occur- 
rence of  a  loop which is due to  the  fact  that  routing messages 
on different lines are sent  at  different frequencies. In this 
case B does not  initiate  a line hold-down when it receives the 
routing  information  from A since the delay  difference is 
always smaller than 8 (rows 2 and 4). Therefore, B switches 
the best  delay path  from A to  C when it receives C s  routing 
message (row 5), i.e., a  loop has again been created!  In row 6 
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we see a hold-down  at C. The  situation becomes even worse 
when B receives the  next  routing message from C (row 11). 
Now B initiates a  line hold-down in the wrong direction! This 
means that  the B-C loop  cannot be removed for almost 2 s 
because B ignores further delay estimates if received from A. 

We call the  occurrence of  a loop whose existence is extended 
because of line hold-down a “loop trap.” These loop  traps 
have been observed repeatedly by the UCLA Network Meas- 
urement  Center  [9] . When such a loop  trap occurs,  packets are 
exchanged between neighbors up  to 50 times before  they can 
continue  their travel to  the  destination IMP. We believe that 
these loop  traps represent  a  major reason for  the observation 
of  occasional very long network delays  during our throughput 
experiments. 

Recently,  the criterion for  initiation  of a hold-down was 
changed in  such  a  way that  it is now independent of the 
frequency  at which  routing messages are sent. As a  result, 
we have not  been able to  detect  loop  traps  in  this  modified 
system.  Naylor  has studied  the  problem of  eliminating loops 
completely, and he presents  a loop-free  routing algorithm  in 
P O I .  

VI. RECENT CHANGES TO MESSAGE PROCESSING 

Some of the problems with  the  subnet  control procedures 
described  in Section 111 have recently led to  a revision of 
message processing in the ~ u b n e t . ~  In  particular, message 
sequencing is now done  on  the basis of  HOST-to-HOST pairs 
and the  maximum  number of messages that can be  transmitted 
simultaneously in parallel between a pair of HOST’s was 
increased from 4 to 8. Let us now describe the details of  this 
new scheme. 

Before a  source HOST A at source IMP S can  send  a  mes- 
sage to some destination HOST B at  destination IMP D, a 
message control  block must  now be  obtained in IMP S and 
IMP D. This message control  block is used to  control  the  trans- 
fer of messages. It is called a transmit block  in IMP S and a 
receive block in IMP D. The  creation of  a transmit block- 
receive block pair is similar to  establishing  a (simplex) connec- 
tion in the HOST-to-HOST protocol.  It requires  an  exchange 
of subnet  control messages that is always initiated  by  the 
source IMP. The message control blocks contain,  among  other 
things, the set  of message numbers in use and the set of 
available message numbers. 

After  the first packet has  been received from a  HOST, the 
source IMP checks whether or not a transmit block-receive 
block pair exists for  the transfer of messages from HOST A to  
HOST B. If HOST A has not sent any messages to  HOST B for 
quite some time,  it is likely that  no  such message control  block 
pair exists. Therefore, source IMP S creates  a transmit  block 
and sends  a subnet  control message to  destination IMP D to  
request the  creation of  a receive block. When  IMP D receives 
this  control message, it creates the  matching receive block and 
returns a subnet  control message to  IMP S to  report  this  fact. 
When  IMP S receives this  control message, the message control 

? 

’ block  pair is established. 

4This is the “version 3” procedure in [SI. 

A  shortage  of transmit  and/or receive blocks will normally 
cause only an initial setup delay. Currently,there are 64  trans- 
mit and  64 receive blocks available in each IMP. This  means, 
for  example,  that a HOST can transmit-data  to  64  different 
HOST’s simultaneously, or that  two HOST’s, attached  to  the 
same destination IMP, can each receive messages from  32 
different HOST’s simultaneously,  etc. Since 64 message blocks 
is a rather large number,  it is unlikely that  this is a  limiting 
resource. 

The remaining resources are acquired in the following 
sequence: message number, reassembly buffers, and  PLT 
entry. Since there are now 8 message sequence numbers which 
are allocated on a  sending HOST-receiving HOST pair basis, 
a HOST is allowed to send up  to  8 messages to some receiving 
HOST without having received an  acknowledgment for  the 
first message. For  multipacket  traffic  this is more  than  enough 
because there are still only 6 entries in the  PLT.  Suddenly, 
therefore,  the  PLT has become a more  prominent  bottleneck 
than  it used to  be in the  old message processing procedure 
when only  four messages per IMP pair could exist. 

Note  that a multipacket message tries to  obtain  the 
reassembly buffers before  it asks for  the  PLT  entry. (This 
sequence for resource  allocation  can  lead to  difficulties as  is 
described in  Section VII.) In case there is no reassembly buffer 
allocation  waiting at  the source IMP, then as before,  the mes- 
sage number and the  PLT  entry are used to  send  a REQALL to  
the  destination IMP, 

VII. THROUGHPUT FOR THE NEW 
MESSAGE PROCESSING 

In  February 1975, we repeated the  throughput measure- 
ments  of  October  1974  to  determine  what  effect  the new  mes- 
sage processing procedure had on the  maximum  throughput. 
Since the  subnet  had grown  in  size, we were able to  measure 
the  throughput as a function of hop distance up  to  12  hops. 
The measured throughput  in  February  1975  with  the new 
message processing procedure was significantly less than  the 
throughput  that was achieved in October  1974. For paths  with 
many  hops,  the decrease in throughput was almost 50 percent. 
The observed throughput degradation was not due to a sudden 
surge of  interfering traffic. Investigation of  this performance 
degradation revealed the following two causes which  explain 
in part the observed decrease in throughput: processing delays 
in 316 IMP’s and an effect which we refer to  as “phasing.” 
Recent measurements show that  the  316 IMP’s in the 
ARPANET are becoming  a  major bottleneck.  For  the  316 
IMP’s, the queueing  delays  in the  input  or processing queue 
are,  on  the average, larger than  the queueing  delays in  the  out- 
put  queue.  The average queueing  delay  in the processing queue 
is about  10 ms. This is more  than 5 times as much as the corre- 
sponding  queueing  delays  in the  516 IMP. The cause for  this 
increase in processing delay can be  found in the more exten- 
sive processing which is done  at a higher priority level. 

A processing delay of  10 ms appears to  be  within acceptable 
limits.  However, this is only an average number.  In particular 
cases, we observed  queueing  delays in the  input  queue  of 
several hundred milliseconds. In addition,  it is not clear what 
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second-order  effects these  long processing delays have on a 
system that was originally designed to be limited  by line band- 
width. 

Phasing, the second  (and  more subtle) cause for  the  through- 
put  degradation, is due to  the sending of superfluous 
REQALL’S! A REQALL is called superfluous if it is sent while a 
previous REQALL is still outstanding. This situation can arise 
if message i sends  a REQALL but does not use the ALL 
returned  by  this REQALL because it  obtainedits reassembly 
buffer  allocation piggy-backed on a RFNM for an earlier mes- 
sage (which  reached the source IMP before  its requested ALL). 
The sending of  superfluous REQALL’S is undesirable because it 
unnecessarily uses up resources. In particular, each REQALL 
claims one  PLT  entry.  Intuitively,  it appears to  be impossible 
that  more  than  four  8-packet messages could be  outstanding  at 
any time since there is reassembly-buffer space for  only  four 
such messages (34 reassembly buffers). If, however, the  buffer 
space that is freed when message i is reassembled causes an 
ALL to piggy-back on an RFNM of message i - j ( j  2 l), then 
the RFNM for message i may queue  up in the  destination IMP 
behind j - 1 other RFNM’S! Thus  only  four messages really 
have buffer space allocated. In addition to  these four,  there 
are other  outstanding messages which have already  reached 
the  destination IMP and which have RFNM’S waiting for 
buffer space  (i.e.,  waiting for piggy-backed ALL’S). 

The sending  of more  than  four  8-packet messages is initially 
caused by  the sending of  superfluous REQALL’S. The PLT 
entries which  were obtained  by these REQALL’S are later used 
by regular messages. When the PLT is full,  further  input  from 
the source HOST is stopped  until a PLT  entry becomes avail- 
able (this  results  in the  inefficient use of transmission facili- 
ties). Thus we have a situation where our HOST uses all six 
entries in the  PLT  for  the transmission to a destination HOST. 

Fig. 7 graphically depicts  the kind  of phasing we observed 
for almost all transmissions over more  than 4 hops.  Let us 
briefly  explain the transmission  of message i. At  time a the last 
packet  of message i - 1 has been  accepted  and  input of the 
first packet  of message i is initiated. This  first packet is re- 
ceived by  the source IMP at  time b. Since there is a buffer 
allocation available (which  came  in piggy-backed on.the RFNM 

for message i - 7) no REQALL is sent. However, the  PLT is full 
at time b. Therefore, message i must wait until time c when 
the RFNM for message i - 6 frees.a  PLT entry  and message i 
may then  proceed. At time d all 8 packets have been  accepted 
by  the source IMP. The first and  eighth  packet are received by 
the  destination IMP at times e and J; respectively. The sending 
of the RFNM for message i is delayed until  the RFNM’S for 
messages i - 3, i - 2, and i - 1 are sent.  The  buffer space that 
is freed when message i + 3 reaches the  destination  at time g is 
piggy-backed on the RFNM for message i which reaches the 
source IMP at  time h. This effect  may be seen in Fig. 7 by 
observing the  time slice picture while message i is in  flight. 
Here we show messages as rectangles and RFNM’S as ovals. 
Attached  to RFNM’S and messages are the ALL and PLT 
resources they  own. We see the  four ALL’S owned  by messages 
i - 1, i, i + 1 and  by  the RFNM for message i - 5 ;  we see the 
six PLT’s owned  by messages i - 1, i and  by  the RFNM’S for 

REST OF  NATION 
DESTI- 

MESSAGE i 

RFNM FOR MESSAGE i 

t 
TIME 

Fig. 7. Phasing and its  degradation  to  throughput. 

messages i - 5 ,  i .- 84, i - 3, i - 2. Message i + .l cannot leave 
the source IMP since it is missing a PLT;  most  of  the PLT’s 
are owned  by RFNM’S who are  foolishly  waiting for piggy- 
backed ALL’S which  are not critical  resources at  the source 
IMP (message i + 1 has its ALL!). The  trouble is clearly due to  
a poor phasing between PLT’s and ALL’S. 

The phasing described above was observed for  destination 
IMP’s without.,  the VDH software.  For VDH IMP‘s, which can 
only reassemble one message at a time (10 reassembly buffers), 
a different  kind of phasing was observed  which  resulted in 
even more serious throughput degradations! In this case,  a 
situation is created in which a REQALL control message is sent 
for every data message. The 6 PLT’s are assigned to  3 REQALL’S 

and 3 data messages. Fig. 8 depicts  this  situation.  The first 
packet  of message i is transmitted  from  the source HOST to  
the source IMP between times a and b. Since there is no  buffer 
allocation available, the source IMP decides to  send  a REQALL. 

However, all the PLT’s are assigned and  therefore  the sending 
of the REQALL message is delayed until time c when  the reply 
to  an old REQALL (for message i - 3) delivers an ALL and a 
PLT.  At this  time,  the PLT entry is immediately  stolen by the 
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DESTI. 
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1 SEC 0 RFNM FOR MESSAGE i 

9 REOALL  GENERATED 
BY MESSAGE i 

TIME 

Fig. 8. Phasing when only one multipacket message can be assembled. 

delayed REQALL (generated for message i). Note  that at this 
point, message i gets the necessary buffer allocation but  it 
cannot be sent  to  the  destination because the PLT is once 
again full! Only  when  the RFNM for message i - 3 times-out 
after  1 s (time d )  and is received by  the source IMP (time e )  
without  a piggy-backed ALL does a  PLT  entry become free 
for use by message i. At timef, all 8 packets have been received 
by the  destination IMP. The sending of  the RFNM for message 
i is now  delayed by several seconds because the replies for mes- 
sages i - 2, i - 1 and for  two previous REQALL’S must be  sent 
first (see the time-siice given by the dashed line in Fig. 8 which 
shows REQALL’S as diamonds and is taken during the 1-s time- 
out  when  nothing is moving in the  net). At  time g, the ALL 

control message responding to REQALL (i) is sent  to  the 
source IMP, and 1 s later  at time h the RFNM for message i 
times-out. The RFNM is finally received for message i by  the 
source IMP at time j. 

The phasing in the case of destination IMP’S with VDH soft- 
ware results  in throughput degradations by  a  factor  of 3 .  This 
large decrease is due to  the fact that  the system is stalled for 
almost 1 s while the source IMP has  the  buffer  allocation  but 
no PLT entry; during this  delay,  the  destination IMP, which 
can free a PLT entry  by sending an RFNM,  is waiting fdr  the 
buffer allocation to  use  as a piggy-back. There are two obvious 
ways to avoid this  undesirable phasing of messages. First, 
one  can avoid sending superfluous REQALL’s which are the 
underlying  causes  of the phasing. Secondly,  one can avoid the 
piggy-backing of  allocates on RFNM’S as long as there are other 
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Fig. 9. ARPANET throughput (May 1975). 

replies to  be  sent. This  second method was suggested and  im- 
plemented  by BBN. 

In Fig. 9 we show some  more  recent throughput measure- 
ments made in May 1975  (after  the phasing fix). As in Fig. 3 ,  
we show the  throughput as a  function  of  hop  distance,  with 
curve A” displaying the,  throughput averaged over the 10-min 
experiment  and curve B” displaying the  throughput  for  the 
best (maximum  throughput)  150 consecutive messages. Curve 
A from Fig. 3 (October 1974) is included for  a comparison  of 
the  two  throughput  experiments. We note  that  the  throughput 
with  the new message processing procedure is inferior to  that 
in October  1974,  although  it is far better  than  that which we 
observed in February  1975 prior to  the phasing fix. 

VIII. CONCLUSIONS 

In  this paper  we have described  procedures for,  limitations 
to,  and measurement  of throughput in the ARPANET. We 
identified some sources of throughput degradation  due to  the 
latest message processing procedure  and  displayed  performance 
measurements  after some  of  these  problems were corrected. 
Here, as with  many  other deadlocks and degradations, it is 
rather easy to find solutions once the  fault has been uncovered; 
the challenge is to  identify and remove these  problems at  the 
design stage. 

The  ARPANET  experience has shown  that  the building of  a 
modern  data  communications  network is an evolving process 
which  requires  careful  observation  and  evaluation at each step 
along the way.  Although the ARPANET was the first large- 
scale experimental packet-switched net and therefore  under- 
went regular changes (as one  would  expect in any pioneering 
experiment) we foresee a  continuing need for system  evaluation. 

The function of network measurements  should not  only  be 
to test the initial  configuration  and  make  sure that  it behaves 
according to  specification. Indeed  the rapid growth  of these 
networks  and  the necessary changes in  hardware  and  software 
make it  extremely  important to  constantly reevaluate the  total 
system design by means  of analysis and measurements.  This is 
the  only guarantee for  detecting performance  problems as they 
arise and  for  acting accordingly before users experience  de- 
graded service. 
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Network  Services  in Systems Network  Architecture 
JAMES P. GRAY. MEMBER, IEEE ’ 

Absrmct-This paper discusses the services provided by a  systems 
network  architecture (SNA) network  and design aspects  related to these 
services. Both  the basic transmission services and higher level network 
services are discussed. 

The first  section  describes the  structure of SNA. The second  section 
describes SNA’s transmission services and sketches in  the  other aspects 
of SNA’s structure.  The  next  section describes services provided to 
users and managers  of the  network  and  the  distribution of these services 
throughout the various nodes of the network.  A  concluding section 
discusses several potential extensions. 

S 
INTRODUCTION 

YSTEMS network  architecture (SNA) is a system  structure 
defined  by message formats and protocols;  it  permits  the 

design of products which  can be  connected  together to  form a 
unified  communication-based data processing system. The 
architecture defines the appearance of  each  node in the  net- 
work as seen by  the  network and the  end users; that is, the 
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external behavior  of the  network  nodes is specified by SNA. 
Actual implementations realize this  architected appearance in 
a  variety of designs and utilize  a  variety of technologies.  Famil- 
iarity with previous IBM communication  products  and  software 
packages is ‘assumed in  explaining the reasoning behind SNA. 
References [ I ]  - [ 131 contain  other descriptions  of SNA and 
implementations of SNA. SNA is an architecture;  for details 
of implementation, including  subsets of SNA that have been 
implemented,  consult  the  product specifications. 

SNA was developed to  satisfy  a  specific set of requirements, 
the  most  important of  which was the need to  support dis- 
tributed processing within a single application. This derived 
from. a  difficulty (communication facilities with reliability 
below that required  of many  major applications)  and an 
opportunity  (the  price/performance  improvements in micro- 
coded controllers as a result of the successful development of 
LSI technologies). Since distributed processing implies the 
existence of distributed  data and distributed  application  pro- 
grams, this  requirement  became: develop  a general solution  for 
program to program communication  through a network. 


